Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37645874

RESUMO

The goal of designing safer, more effective drugs has led to tremendous interest in molecular mechanisms through which ligands can precisely manipulate signaling of G-protein-coupled receptors (GPCRs), the largest class of drug targets. Decades of research have led to the widely accepted view that all agonists-ligands that trigger GPCR activation-function by causing rearrangement of the GPCR's transmembrane helices, opening an intracellular pocket for binding of transducer proteins. Here we demonstrate that certain agonists instead trigger activation of free fatty acid receptor 1 by directly rearranging an intracellular loop that interacts with transducers. We validate the predictions of our atomic-level simulations by targeted mutagenesis; specific mutations which disrupt interactions with the intracellular loop convert these agonists into inverse agonists. Further analysis suggests that allosteric ligands could regulate signaling of many other GPCRs via a similar mechanism, offering rich possibilities for precise control of pharmaceutically important targets.

2.
SLAS Discov ; 27(7): 405-412, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36064100

RESUMO

Study of small molecule binding to live cells provides important information on the characterization of ligands pharmacologically. Here we developed and validated a label-free, liquid chromatography-mass spectrometry (LC-MS) based cell binding assay, using centrifugation to separate binders from non-binders. This assay was applied to various target classes, with particular emphasis on those for which protein-based binding assay can be difficult to achieve. In one example, to study a G protein coupled receptor (GPCR), we used one antagonist as probe and multiple other antagonists as competitor ligands. Binding of the probe was confirmed to be specific and saturable, reaching a fast equilibrium. Competition binding analysis by titration of five known ligands suggested a good correlation with their inhibition potency. In another example, this assay was applied to an ion channel target with its agonists, of which the determined binding affinity was consistent with functional assays. This versatile method allows quantitative characterization of ligand binding to cell surface expressed targets in a physiologically relevant environment.


Assuntos
Receptores Acoplados a Proteínas G , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
3.
SLAS Discov ; 26(9): 1225-1237, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218698

RESUMO

High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.


Assuntos
Apolipoproteína L1/antagonistas & inibidores , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas
4.
J Med Chem ; 64(11): 7691-7701, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038119

RESUMO

A renal outer medullary potassium channel (ROMK, Kir1.1) is a putative drug target for a novel class of diuretics with potential for treating hypertension and heart failure. Our first disclosed clinical ROMK compound, 2 (MK-7145), demonstrated robust diuresis, natriuresis, and blood pressure lowering in preclinical models, with reduced urinary potassium excretion compared to the standard of care diuretics. However, 2 projected to a short human half-life (∼5 h) that could necessitate more frequent than once a day dosing. In addition, a short half-life would confer a high peak-to-trough ratio which could evoke an excessive peak diuretic effect, a common liability associated with loop diuretics such as furosemide. This report describes the discovery of a new ROMK inhibitor 22e (MK-8153), with a longer projected human half-life (∼14 h), which should lead to a reduced peak-to-trough ratio, potentially extrapolating to more extended and better tolerated diuretic effects.


Assuntos
Natriuréticos/química , Bloqueadores dos Canais de Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Potenciais de Ação/efeitos dos fármacos , Animais , Benzofuranos/química , Pressão Sanguínea/efeitos dos fármacos , Diuréticos/química , Diuréticos/metabolismo , Diuréticos/farmacologia , Cães , Meia-Vida , Haplorrinos , Humanos , Masculino , Natriuréticos/metabolismo , Natriuréticos/farmacologia , Piperazinas/química , Potássio/urina , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Endogâmicos SHR
5.
Bioorg Med Chem Lett ; 30(21): 127460, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755680

RESUMO

Structure- and ligand-based virtual-screening methods (docking, 2D- and 3D-similarity searching) were analyzed for their effectiveness in virtual screening against FFAR2. To evaluate the performance of these methods, retrospective virtual screening was performed. Statistical quality of the methods was evaluated by BEDROC and RIE. The results revealed that electrostatic similarity search protocol using EON (ET combo) outperformed all other protocols with outstanding enrichment of >95% in top 1% and 2% of the dataset with an AUC of 0.958. Interestingly, the hit lists that are obtained from different virtual-screening methods are generally highly complementary to hits found from electrostatic similarity searching. These results suggest that considering electrostatic similarity searching first increases the chance of identifying more (and more diverse) active compounds from a virtual-screening campaign. Accordingly, prospective virtual screening using electrostatic similarity searching was used to identify novel FFAR2 ligands. The discovered compounds provide new chemical matter starting points for the initiation of a medicinal chemistry campaign.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Receptores de Superfície Celular/agonistas , Anti-Inflamatórios não Esteroides/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
6.
SLAS Technol ; 25(3): 276-285, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32003291

RESUMO

G-protein-coupled receptors (GPCRs) are modulated by many marketed drugs, and as such, they continue to be key targets for drug discovery and development. Many GPCR targets at Merck Research Laboratories (MRL) are profiled using homogenous time-resolved fluorescence (HTRF) inositol monophosphate (IP-1) cell-based functional assays using adherent cells in 384-well microplates. Due to discrepancies observed across several in vitro assays supporting lead optimization structure-activity relationship (SAR) efforts, different assay paradigms were evaluated for removing growth medium from the assay plates prior to compound addition and determination of IP-1 accumulation. Remarkably, employing the noncontact centrifugation BlueWasher method leads to left-shifted potencies across multiple structural classes and rescues "false negatives" relative to the traditional manual evacuation method. Further, assay performance is improved, with the minimum significant ratio of challenging chemotypes dropping from ~5-6 to <3. While the impact of BlueWasher on a broad range of our GPCR targets remains to be determined, for highly protein-bound small molecules, it provides a path toward improving assay reproducibility across scientists and sites as well as reducing replicates in SAR assay support.


Assuntos
Bioensaio/métodos , Células/metabolismo , Automação , Células HEK293 , Humanos , Reprodutibilidade dos Testes
7.
Bioorg Med Chem Lett ; 29(14): 1842-1848, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109791

RESUMO

GPR40 (FFAR1 or FFA1) is a G protein-coupled receptor, primarily expressed in pancreatic islet ß-cells and intestinal enteroendocrine cells. When activated by fatty acids, GPR40 elicits increased insulin secretion from islet ß-cells only in the presence of elevated glucose levels. Towards this end, studies were undertaken towards discovering a novel GPR40 Agonist whose mode of action is via Positive Allosteric Modulation of the GPR40 receptor (AgoPAM). Efforts were made to identify a suitable GPR40 AgoPAM tool molecule to investigate mechanism of action and de-risk liver toxicity of GPR40 AgoPAMs due to reactive acyl-glucuronide (AG) metabolites.


Assuntos
Indanos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Desenho de Fármacos , Humanos
8.
ACS Med Chem Lett ; 9(7): 685-690, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034601

RESUMO

A series of biaryl chromans exhibiting potent and selective agonism for the GPR40 receptor with positive allosteric modulation of endogenous ligands (AgoPAM) were discovered as potential therapeutics for the treatment of type II diabetes. Optimization of physicochemical properties through modification of the pendant aryl rings resulted in the identification of compound AP5, which possesses an improved metabolic profile while demonstrating sustained glucose lowering.

9.
PLoS One ; 12(10): e0186033, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29053717

RESUMO

GPR40 agonists are effective antidiabetic agents believed to lower glucose through direct effects on the beta cell to increase glucose stimulated insulin secretion. However, not all GPR40 agonists are the same. Partial agonists lower glucose through direct effects on the pancreas, whereas GPR40 AgoPAMs may incorporate additional therapeutic effects through increases in insulinotrophic incretins secreted by the gut. Here we describe how GPR40 AgoPAMs stimulate both insulin and incretin secretion in vivo over time in diabetic GK rats. We also describe effects of AgoPAMs in vivo to lower glucose and body weight beyond what is seen with partial GPR40 agonists in both the acute and chronic setting. Further comparisons of the glucose lowering profile of AgoPAMs suggest these compounds may possess greater glucose control even in the presence of elevated glucagon secretion, an unexpected feature observed with both acute and chronic treatment with AgoPAMs. Together these studies highlight the complexity of GPR40 pharmacology and the potential additional benefits AgoPAMs may possess above partial agonists for the diabetic patient.


Assuntos
Glucose/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Linhagem Celular , Cricetulus , Glucagon/metabolismo , Teste de Tolerância a Glucose , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Ratos
10.
J Lipid Res ; 58(8): 1561-1578, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28583918

RESUMO

GPR40 and GPR120 are fatty acid sensors that play important roles in glucose and energy homeostasis. GPR40 potentiates glucose-dependent insulin secretion and demonstrated in clinical studies robust glucose lowering in type 2 diabetes. GPR120 improves insulin sensitivity in rodents, albeit its mechanism of action is not fully understood. Here, we postulated that the antidiabetic efficacy of GPR40 could be enhanced by coactivating GPR120. A combination of GPR40 and GPR120 agonists in db/db mice, as well as a single molecule with dual agonist activities, achieved superior glycemic control compared with either monotherapy. Compared with a GPR40 selective agonist, the dual agonist improved insulin sensitivity in ob/ob mice measured by hyperinsulinemic-euglycemic clamp, preserved islet morphology, and increased expression of several key lipolytic genes in adipose tissue of Zucker diabetic fatty rats. Novel insights into the mechanism of action for GPR120 were obtained. Selective GPR120 activation suppressed lipolysis in primary white adipocytes, although this effect was attenuated in adipocytes from obese rats and obese rhesus, and sensitized the antilipolytic effect of insulin in rat and rhesus primary adipocytes. In conclusion, GPR120 agonism enhances insulin action in adipose tissue and yields a synergistic efficacy when combined with GPR40 agonism.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Lipólise , Receptores Acoplados a Proteínas G/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiopatologia , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Ratos , Receptores Acoplados a Proteínas G/agonistas
11.
Nat Struct Mol Biol ; 24(7): 570-577, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28581512

RESUMO

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40-MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
12.
PLoS One ; 12(5): e0176182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542610

RESUMO

GPR40 (FFA1) is a fatty acid receptor whose activation results in potent glucose lowering and insulinotropic effects in vivo. Several reports illustrate that GPR40 agonists exert glucose lowering in diabetic humans. To assess the mechanisms by which GPR40 partial agonists improve glucose homeostasis, we evaluated the effects of MK-2305, a potent and selective partial GPR40 agonist, in diabetic Goto Kakizaki rats. MK-2305 decreased fasting glucose after acute and chronic treatment. MK-2305-mediated changes in glucose were coupled with increases in plasma insulin during hyperglycemia and glucose challenges but not during fasting, when glucose was normalized. To determine the mechanism(s) mediating these changes in glucose metabolism, we measured the absolute contribution of precursors to glucose production in the presence or absence of MK-2305. MK-2305 treatment resulted in decreased endogenous glucose production (EGP) driven primarily through changes in gluconeogenesis from substrates entering at the TCA cycle. The decrease in EGP was not likely due to a direct effect on the liver, as isolated perfused liver studies showed no effect of MK-2305 ex vivo and GPR40 is not expressed in the liver. Taken together, our results suggest MK-2305 treatment increases glucose stimulated insulin secretion (GSIS), resulting in changes to hepatic substrate handling that improve glucose homeostasis in the diabetic state. Importantly, these data extend our understanding of the underlying mechanisms by which GPR40 partial agonists reduce hyperglycemia.


Assuntos
Benzopiranos/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Tiazolidinedionas/farmacologia , Animais , Benzopiranos/química , Glicemia/metabolismo , Células CHO , Cricetulus , Diabetes Mellitus Experimental/metabolismo , Avaliação Pré-Clínica de Medicamentos , Jejum/sangue , Células HEK293 , Humanos , Hipoglicemiantes/química , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Knockout , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tiazolidinedionas/química , Fatores de Tempo , Técnicas de Cultura de Tecidos
13.
Bioorg Med Chem Lett ; 27(11): 2559-2566, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431879

RESUMO

SAR in the previously described spirocyclic ROMK inhibitor series was further evolved from lead 4 by modification of the spirocyclic core and identification of novel right-side pharmacophores. In this process, it was discovered that the spiropyrrolidinone core with the carbonyl group α to the spirocenter was preferred for potent ROMK activity. Efforts aimed at decreasing hERG affinity within the series led to the discovery of multiple novel right-hand pharmacophores including 3-methoxythiadiazole, 2-methoxypyrimidine, and pyridazinone. The most promising candidate is pyridazinone analog 32 that showed an improved functional hERG/ROMK potency ratio and preclinical PK profile. In vivo evaluation of 32 demonstrated blood pressure lowering effects in the spontaneously hypertensive rat model.


Assuntos
Canal de Potássio ERG1/metabolismo , Bloqueadores dos Canais de Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Cães , Canal de Potássio ERG1/antagonistas & inibidores , Meia-Vida , Hipertensão/tratamento farmacológico , Bloqueadores dos Canais de Potássio/farmacocinética , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Pirimidinas/química , Ratos , Ratos Endogâmicos SHR , Compostos de Espiro/química , Relação Estrutura-Atividade , Tiadiazóis/química
14.
Am J Physiol Endocrinol Metab ; 313(1): E37-E47, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28292762

RESUMO

G protein-coupled receptor 40 (GPR40) partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose-independent insulin secretagogues. The class of small-molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and glucagon-like peptide-1 (GLP-1). Here we show that GPR40 AgoPAMs significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP-1 receptor-null mice. Furthermore, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase IV inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy rhesus macaque demonstrating that the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.


Assuntos
Regulação do Apetite/genética , Peso Corporal/genética , Ingestão de Alimentos/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Redução de Peso/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética
15.
ACS Med Chem Lett ; 8(2): 221-226, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28197316

RESUMO

GPR40 is a G-protein-coupled receptor expressed primarily in pancreatic islets and intestinal L-cells that has been a target of significant recent therapeutic interest for type II diabetes. Activation of GPR40 by partial agonists elicits insulin secretion only in the presence of elevated blood glucose levels, minimizing the risk of hypoglycemia. GPR40 agoPAMs have shown superior efficacy to partial agonists as assessed in a glucose tolerability test (GTT). Herein, we report the discovery and optimization of a series of potent, selective GPR40 agoPAMs. Compound 24 demonstrated sustained glucose lowering in a chronic study of Goto Kakizaki rats, showing no signs of tachyphylaxis for this mechanism.

16.
ACS Med Chem Lett ; 8(1): 49-54, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28105274

RESUMO

Type 2 diabetes mellitus (T2DM) is an ever increasing worldwide epidemic, and the identification of safe and effective insulin sensitizers, absent of weight gain, has been a long-standing goal of diabetes research. G-protein coupled receptor 120 (GPR120) has recently emerged as a potential therapeutic target for treating T2DM. Natural occurring, and more recently, synthetic agonists have been associated with insulin sensitizing, anti-inflammatory, and fat metabolism effects. Herein we describe the design, synthesis, and evaluation of a novel spirocyclic GPR120 agonist series, which culminated in the discovery of potent and selective agonist 14. Furthermore, compound 14 was evaluated in vivo and demonstrated acute glucose lowering in an oral glucose tolerance test (oGTT), as well as improvements in homeostatic measurement assessment of insulin resistance (HOMA-IR; a surrogate marker for insulin sensitization) and an increase in glucose infusion rate (GIR) during a hyperinsulinemic euglycemic clamp in diet-induced obese (DIO) mice.

17.
ACS Med Chem Lett ; 6(7): 747-52, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26191360

RESUMO

A new subseries of ROMK inhibitors exemplified by 28 has been developed from the initial screening hit 1. The excellent selectivity for ROMK inhibition over related ion channels and pharmacokinetic properties across preclinical species support further preclinical evaluation of 28 as a new mechanism diuretic. Robust pharmacodynamic effects in both SD rats and dogs have been demonstrated.

18.
Mol Metab ; 4(1): 3-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25685685

RESUMO

OBJECTIVES: GPR40 (FFAR1), a clinically proven anti-diabetes target, is a Gq-coupled receptor for long chain fatty acids (LCFA) stimulating insulin secretion directly and mediating a major part of the dietary triglyceride-induced secretion of the incretins GLP-1 and GIP. In phase-II studies the GPR40 agonist TAK-875 decreased blood glucose but surprisingly without stimulating incretins. METHODS AND RESULTS: Here we find that GPR40 can signal through not only Gq and IP3 but also Gs and cAMP when stimulated with certain agonists such as AM-1638 and AM-5262 in contrast to the endogenous LCFA ligands and agonists such as TAK-875 and AM-837, which only signal through Gq. In competition binding against [3H]AM-1638 and [3H]L358 the Gq + Gs and the Gq-only agonists either competed for or showed positive cooperativity by increasing the binding of the two different radio-ligands, in opposite ways. Nevertheless, both the Gq-only and the Gq + Gs agonists all docked surprisingly well into the binding site for TAK-875 in the X-ray structure of GPR40. In murine intestinal primary cell-cultures the endogenous LCFAs and the Gq-only agonists stimulated GLP-1 secretion with rather poor efficacy as compared with the high efficacy Gq + Gs GPR40 agonists and a prototype GPR119 agonist. Similarly, in fasting both male and female mice the Gq + Gs agonists showed significantly higher efficacy than the Gq-only agonists in respect of increasing plasma GLP-1 and plasma GIP in a GPR40-dependent manner. CONCLUSIONS: It is concluded that stimulation of GPR40 by endogenous LCFAs or by Gq-only synthetic agonists result in a rather limited incretin response, whereas Gq + Gs GPR40 agonists stimulate incretin secretion robustly.

19.
Channels (Austin) ; 3(6): 437-47, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21150283

RESUMO

Gating modifier peptides alter gating of voltage-gated potassium (KV) channels by binding to the voltage sensor paddle and changing the energetics of channel opening. Since the voltage sensor paddle is a modular motif with low sequence similarity across families, targeting of this region should yield highly specific channel modifiers. To test this idea, we developed a binding assay with the KV2.1 gating modifier, GxTX-1E. Monoiodotyrosine-GxTX-1E (125I-GxTX-1E) binds with high affinity (IC50 = 4 nM) to CHO cells stably expressing hKV2.1 channels, but not to CHO cells expressing Maxi-K channels. Binding of 125I-GxTX-1E to KV2.1 channels is inhibited by another KV2.1 gating modifier, stromatoxin (IC50 = 30 nM), but is not affected by iberiotoxin or charybdotoxin, pore blocking peptides of other types of potassium channels, or by ProTx-II, a selective gating modifier peptide of the voltage-gated sodium channel NaV1.7. Specific 125I-GxTX-1E binding is not detectable when CHO-KV2.1 cells are placed in high external potassium, suggesting that depolarization favors dissociation of the peptide. The binding assay was adapted to a 384-well format, allowing high throughput screening of large compound libraries. Interestingly, we discovered that compounds related to PAC, a di-substituted cyclohexyl KV channel blocker, displayed inhibitory binding activity. These data establish the feasibility of screening large libraries of compounds in an assay that monitors the displacement of a gating modifier from the channel's voltage sensor. Future screens using this approach will ultimately test whether the voltage sensor of KV channels can be selectively targeted by small molecules to modify channel function.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Shab/metabolismo , Animais , Proteínas de Artrópodes , Células CHO , Cricetinae , Cricetulus , Humanos , Concentração Inibidora 50 , Peptídeos/farmacologia , Ligação Proteica , Canais de Potássio Shab/efeitos dos fármacos , Venenos de Aranha/farmacologia
20.
Channels (Austin) ; 2(5): 312-21, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18989100

RESUMO

Transporters represent attractive targets for drug discovery and are implicated in the pathophysiology of disorders across several therapeutic areas including asthma, cardiovascular disease, diabetes and neuroscience. However, the intrinsic mechanistic properties of transporters present significant challenges to the development of high-throughput screening methodologies. This review provides an update on potential transporter targets and evaluates the impact of available technologies to enable transporter screening, lead optimization and assessment of pharmacokinetics.


Assuntos
Descoberta de Drogas/métodos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...